34,559 research outputs found

    The Landau-Zener transition and the surface hopping method for the 2D Dirac equation for graphene

    Full text link
    A Lagrangian surface hopping algorithm is implemented to study the two dimensional massless Dirac equation for Graphene with an electrostatic potential, in the semiclassical regime. In this problem, the crossing of the energy levels of the system at Dirac points requires a particular treatment in the algorithm in order to describe the quantum transition-- characterized by the Landau-Zener probability-- between different energy levels. We first derive the Landau-Zener probability for the underlying problem, then incorporate it into the surface hopping algorithm. We also show that different asymptotic models for this problem derived in [O. Morandi, F. Sch{\"u}rrer, J. Phys. A: Math. Theor. 44 (2011)] may give different transition probabilities. We conduct numerical experiments to compare the solutions to the Dirac equation, the surface hopping algorithm, and the asymptotic models of [O. Morandi, F. Sch{\"u}rrer, J. Phys. A: Math. Theor. 44 (2011)]

    An Asymptotic Preserving Scheme for the ES-BGK model

    Full text link
    In this paper, we study a time discrete scheme for the initial value problem of the ES-BGK kinetic equation. Numerically solving these equations are challenging due to the nonlinear stiff collision (source) terms induced by small mean free or relaxation time. We study an implicit-explicit (IMEX) time discretization in which the convection is explicit while the relaxation term is implicit to overcome the stiffness. We first show how the implicit relaxation can be solved explicitly, and then prove asymptotically that this time discretization drives the density distribution toward the local Maxwellian when the mean free time goes to zero while the numerical time step is held fixed. This naturally imposes an asymptotic-preserving scheme in the Euler limit. The scheme so designed does not need any nonlinear iterative solver for the implicit relaxation term. Moreover, it can capture the macroscopic fluid dynamic (Euler) limit even if the small scale determined by the Knudsen number is not numerically resolved. We also show that it is consistent to the compressible Navier-Stokes equations if the viscosity and heat conductivity are numerically resolved. Several numerical examples, in both one and two space dimensions, are used to demonstrate the desired behavior of this scheme

    Local sensitivity analysis for the Cucker-Smale model with random inputs

    Full text link
    We present pathwise flocking dynamics and local sensitivity analysis for the Cucker-Smale(C-S) model with random communications and initial data. For the deterministic communications, it is well known that the C-S model can model emergent local and global flocking dynamics depending on initial data and integrability of communication function. However, the communication mechanism between agents are not a priori clear and needs to be figured out from observed phenomena and data. Thus, uncertainty in communication is an intrinsic component in the flocking modeling of the C-S model. In this paper, we provide a class of admissible random uncertainties which allows us to perform the local sensitivity analysis for flocking and establish stability to the random C-S model with uncertain communication.Comment: 32 page

    A High Order Stochastic Asymptotic Preserving Scheme for Chemotaxis Kinetic Models with Random Inputs

    Get PDF
    In this paper, we develop a stochastic Asymptotic-Preserving (sAP) scheme for the kinetic chemotaxis system with random inputs, which will converge to the modified Keller-Segel model with random inputs in the diffusive regime. Based on the generalized Polynomial Chaos (gPC) approach, we design a high order stochastic Galerkin method using implicit-explicit (IMEX) Runge-Kutta (RK) time discretization with a macroscopic penalty term. The new schemes improve the parabolic CFL condition to a hyperbolic type when the mean free path is small, which shows significant efficiency especially in uncertainty quantification (UQ) with multi-scale problems. The stochastic Asymptotic-Preserving property will be shown asymptotically and verified numerically in several tests. Many other numerical tests are conducted to explore the effect of the randomness in the kinetic system, in the aim of providing more intuitions for the theoretic study of the chemotaxis models
    • …
    corecore